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Potentials and flows associated with a line segment 
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SUMMARY ' 
Integral transformations are developed to construct three and five axisymmetric potentials for a needle or straight line 
segment. These potentials are applied to flow past a needle and one of the main results is for streaming flow past 
a line segment in which the fluid velocity vanishes on the boundary. This solution may also be regarded as a Stokes 
flow or an inviscid potential flow. 

1. Introduction 

The first part of this paper is concerned with the axisymmetric potentials for a needle or straight 
line segment in three and five dimensions. The needle is not considered as the limiting form of a 
prolate ellipsoid of revolution or any other closed three-dimensional surface. The method of 
solution is to take a frame O (x, y, z) and to consider two axially symmetric potentials one about 
the x-axis and the other about the z-axis. Since both potentials are solutions of the full three- 
dimensional Laplace equation, they are related by an integral transformation. The main proper- 
ty of the integral transformation is that it maps the mixed value problem for the potential of a 
thin circular disk into the mixed problem for a finite line segment maintained at the same po- 
tential. The method is readily extended to any number  of dimensions and in the present work 
the cases n = 3, 5 are considered in some detail. The potentials for these cases are continuous but 
at the tips of the needle there are singularities in the partial derivatives behaving like inverse 
square root of distance from the tips. This type of singularity is quite common for problems of 
mixed type. At infinity, the leading term for the potential behaves like a point charge or a source. 

The second part  of the paper is the application of the potentials to flow past a needle using 
the correspondence principle of Weinstein [1] and the method of Payne and Pell [2, 3] for 
a class of axisymmetric inviscid and Stokes flow. The main result is the stream function for 
streaming flow past a needle satisfying zero fluid velocity on the needle and a uniform stream 
at infinity. The solution is in fact, an exact solution for potential flow, Stokes flow and of the 
Navier-Stokes equations. The solution has a continuous velocity, is independent of the Rey- 
nolds number and does not possess any vorticity. There is of course no drag on the needle and 
at infinity the flow behaves like an ordinary fluid producing dipole. It is possible the solution 
found in this paper has application to slender body theory particularly when the boundary 
surface is not smooth e.g. a finite cylinder of circular cross section with flat ends. In fact, the 
needle solution may well be the limit of the finite cylinder problem when the radius tends to zero. 

Finally, it is shown in the final section there is a non uniqueness for both inviscid and Stokes 
flow past a needle. However, if the principle of minimum singularity is employed, this non 
uniqueness can be resolved by choosing the solution least singular at the tips. The solution 
found here appears to be the only example of a potential flow which satisfies viscous no-slip 
boundary conditions. This is presumably connected with the fact that the boundary is one- 
dimensional. 
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2. Notation and method of solution 

It is convenient 
respectively 

x = r sin 

y = r sin 

Z = r cOS 

and p = r sin 0, 

0 2 
A3 ~ ~r2 

0 2 
Op2 

and in (r, 0', q)') 

02 ! 
A3 - ~ r 2  

to define two systems of spherical coordinates referred to the z- and x-axes 

0COS q~=rcos  0 ' = z ' ,  

0 sin q5 = r sin 0' sin qS' = y', (1) 

0 = r sin 0' cos qS' = x ' ,  

p'= r sin 0'. The full three-dimensional Laplace operator is defined by 

2 0  1 0 / s i n 0 ,  1 0 2 
+ 7 ~ r r  + r  2 s i n 0 0 0  ~ - d )  + r 2sin 200q52 

1 0 0: 1 02 
- - - + p  ~pp + ~  + . 5 & 5  ~ ,  (2) 

coordinates 

2 0  1 0 ( ~ 7 )  1 ~2 
+ - + 0' sin 0' + r & r 2 sin 00' r2 sin: 0' 0qY 2 

r 2 sin 0 00 , 

02 1 0 0 2 .1 02 
= - - +  + - - + - - - - .  

ap': e :  o4,': 
The axially symmetric Laplacian is denoted by 

02 1 0 02 02 2 0 
L I - - - +  + --- + -  + Op 2 p @ OZ 2 Or 2 r ~rr 

and 

(3) 

(4) 

0 1 0 0 2 0 2 2 0 
/~1 = - - +  + - -  + _  + 

0p': p; ~ Oz': Or2 r ~r 
1 a (  0 , 0 )  

r 2sin0'  c30' sin ~07 . (5) 

It is stated at the outset that the functions considered in this paper are continuous with their 
partial derivatives up to the order of the differential equations, unless otherwise indicated. 
Let V(x, p') be an axially symmetric harmonic satisfying I21 {V(x. p')} = 0  and be symmetric 
with respect to both coordinates x and p'. Now V is also a solution of the full Laplace equation 

A3(V) - Vxx+ Vy,+ V= = 0,  (6) 

which is symmetric with respect to all three coordinates (x, y, z) and may be expanded in the 
form 

V (x, p') = ~ V:, (z, p) cos 2nq~, (7) 
n=O 

where Vs,(x, p) is a solution of the equation 

'0 2 1 0 4n 2 0 - \  
• + + v:.(z, p)=O. p Op p2 

It follows from Eqn. (7) that Vz,(Z, p) is expressible in integral form as follows" 

v:.(z, p) 1 [:= = - V{p cos ~o,(pZsinZ~b+z2) ~} cos n~bdqb, 
7E ,] 0 

for n ~ 1 and 

12 = +z W(z, p)= Vo(z, p) ~ V{p cos ~b,(p: sin: ~b : ~ 

(8) 

(9) 

(10) 
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Figure 1. Diagram showing the two systems of spherical polar coordinates (r, 0, 4)) and (r, 0', 4)'). 

where p' = (p2 sin 24) + z2)~. Equation (10) is an integral transformation which maps an axially 
symmetric harmonic V (z', p') into an axially symmetric harmonic W (z, p). Two properties of 
the transformation (10) required for the present paper are 

1 _[2~o V(O, p')d(o = V(O, p'), p'= [zl (11) (i) W(z, 0) = ~ 

and 

p = O  7Z x = O +  

The present paper demonstrates that Eqn. (10) is suitable for mapping the mixed boundary 
value problem for the potential of a thin circular disk into the mixed problem for the potential 
of a finite straight line segment. 

Now the mixed boundary value problem for the circular disk contains a discontinuity in the 
normal derivative on the disk surface. In fact 

3 2 3 2 1 3 V(x ,p ' )=  6(x) (13) 
L~(v)- ~ + ~ + ) ~  U~ x=o+ ' 

where 6 (x) is the Dirac delta function defined over the half interval by S~ 6 (x) dx = �89 6 (x) = 0, 
x > 0. It follows that 0V/~(0 is discontinuous at q~-~z,- 1 ~z3 for 0 ~ r ~ 1, and to show W (z, p) 
is an axially symmetric harmonic in p > 0, it is first observed that 
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But 

i'2r~ ( 0 2 1 9  9 2 ) L,(W) = + + V(p  cos ~b, (pgsin2q~+22)~dq~ 
o Vzz  

f2~A3(V)dq~ 1 f 2~ 02V 
o ~ o ~ z d ~ b .  

04) 

(15) 

p2 + (16) 
~ -  0 ~ k• - 0 

Since A3(V)=A'3(V)=O, except on x=0 ,  0 ~  r ~  1, and 

. . . .  p21f z=82Vo ~-d4) p~l [~-~1 ~=+~ + )51 -8[~J ~"+~ o (17) 

Combining Eqns. (16) and (17) with Eqn. (15) is follows that W is a solution of L,  (W) in p > 0. 
The boundary value problem for the thin circular disk x = 0, 0 ~ p' ~ 1, is 

( 92 02 1 ~--p,p,) 
+ + v =  o,  (18) 

except on x=O, O~ < p'<~ 1, subject to 

v(0, p')= 1, 0 ~ ; ' ~ 1 ,  
" "  8~vTv ] = 0 ,  p ' > l ,  (19) 

x=O 
V ~ O  ( ! ) a s  r ~ o e .  

One of the simplest representations for the solution is given by Tranter [4] where the disk is 
regarded as the limiting form of the oblate spheroid and 

2 
V = - cot-* (sinh c~), (20) 

7~ 

where oblate ellipsoidal coordinates are defined by 

x = sinh c~ cos fl, p ' =  cosh c~ sin ft. (21) 

In terms of the original coordinates 

V = 2 cot-  1 ~ r 2 - 1  1 }�89 ~ ~ -  + ~ [(r e -- 1) 2 -}- 4x2] �89 , (22) 

so that W can be expressed as 

W(z, 0) = ~ cot -1 + I [ ( r 2 -  1)2+4x 2] d~b. (23) 

It is readily verified that as r--.oe, W ~  O(r-1), and on the axis 

W(z, 0) = -2 c~  1 + 1]r2 _ lj , 

= 1, 0 ~ r ~ l ,  

2 
= - c o t - '  (r 2 - 1 )  ~ for r > 1. (24) 

The p%tential is continuous on the axis but the derivatives have square root singularities at the 
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tips. To  determine the local expansion of the potent ia l  W abou t  one tip, say, p = 0, z = 1, it is 
convenient  to introduce local polar  coordinates  (r 1, 01) defined by 

r c o s 0 = r  l c o s 0 1 + 1 ,  r s i n 0 = r  1 s i n 0 1 .  

If r~ ~ 1, and 0 ~  01 < e <  re, for some c~< rE, then W is approx ima te ly  given by 

W * ~ !  r~i [2~ {cos - -  - -  01 "q:- [COS 2 0 ,  "q- sin 2 0, COS 2 r  ~dd~. (25) 

The second te rm is a constant  mult iple of r~P_~_ (cos 01) which is clearly a solution of the three- 
dimensional  Laplace  equat ion and 0W*/001 =0 ,  on 01 = 0. 

Returning to Eqn. (23) the potent ial  W is cont inuous everywhere and is a solution of L 1 (W) = 0 
except on p = 0, [z[ < 1, W satisfies the mixed condi t ions 

W(z,  0) = 1, Izl < 1, 0 W  = 0, p = 0 ,  [zl > 1 (26) 
0p 

It is noted that  OW/Op@ 0 on the needle but on the other hand  it is not  infinite except at the 
tips p = 0, I zl = 1. In the next section it will be shown how to extend the me thod  to higher di- 
mensions.  

3. Five dimensions 

As in the previous section it is convenient  to define hyperspher ica l  coordinates :  

x l = r  s i n 0  sinq51 sin~b 2 c o s 4 ) 3 = = r c o s 0 ' = x S '  , 

x 2 = r sin 0 sin q51 sin q52 sin q53 = r sin 0' cos qS' 1 = x k ,  

x3 = r sin 0 sin q51 c o s  (/)2 

x4 = r sin 0 cos q~l 

X 5 = r COS 0 

and hypercylindrical  radii vectors by 

= r sin 0' sin qS] cos qS~ = x~ ,  

= r sin 0' sin 4/1 sin ~b~ sin qS~ = x~ ,  

= r sin 0' sin qS' 1 sin qS~ cos ~b~ = x'l , 

/ p = x!i = r sin 0, p'  = x) 2 = r sin 0 ' .  
j = l  j = l  

Let V(xl ,  . . . ,  xs) be a solution of the f ive-dimensional  Laplace  equa t ion  

(28) 

(29) 

5 

As(V)  ~ Z Vxj~j = 0 ,  (30) 
j = l  

where V is symmetr ic  with respect to each axis x~, j = 1, . . . ,  5. It  is noted  that  the full Lap lac ian  
in five dimensions can be expressed in cylndrical polars  as 

02 3 0 0 2 1 0 / i n 2 ~ 1  0 , As-- y p + + + ) 

1 0 ( 0 )  1 0 2 
+ p2sin2q51 sin q52 8q52 sin q52 ~ 2  + p2sin2q51sin2q52 0~ b2" 

Consider  now the analogue of the integral t r ans format ion  (10) in five dimensions.  This is 

1 '~ V (x l ,  . . . ,  xs) sin2q51 sin (02d491dqb2d493, 
w ( x ~ , p ) = ~  o o o 

and 
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- 9 2 3 9 )  

- rc 2 As(V) sin2q51 sin 492d~)adq)2d493 
0 0 0 

1 9 in2 41 -]- 
(rcP) z o o o sin2~blgqS~ ~ - ,  

l 1 

sin~q51 sin ~b 2 sinZq51 sin2 qSa 

~ .  0 0 0 

sin 4'2 ~ 2  + 94,~ x 

x sin2qbl sin ()2dtbld(02d~) 3 

As(V)  sin 2 q~ sin 4zd4)~dd&d43 

1 '~ ~ I- 9Vq '~ 
o , o  q~l } ~ f l o  sin ~b 2 dq5 2 dq~ 3 

1 '~ sin q52 d(oldc/) 2 
(=p)2 0 0 9(~2J 0 

1 frtff~r 1 U O V ~ r ~ d I ~ l d ~ 2 d @ 2 = O  " 

(TEP) 2 0 0 ~ 2  kaq)3J 0 

(33) 

(34) 

This result is still valid when the derivative OV/9x'5 is discontinuous over the plane x~ =0. 
Thus W= vt3)(xs, p) is a solution of the five-dimensional axially symmetric Laplace equation. 
As in the three-dimensional case V(x l ,  ..., xs) can be written as V -= U(x;,  p'), where U(x;, p') 
is an axially symmetric harmonic in 5 dimensions. The corresponding properties on the axis 

(i) W(xs,  O) = U(O, p'), p ' =  [xsf , (35) 
and 

p=o 3~ & ;  (x; ,p ' ) l .~=0+.  (36) 

for the case in which OU/gx's is discontinuous on x; = 0. The problem for U is that ofa hyperdisk 
x; = 0, 0 ~ p' ~ 1, charged to unit potential. The boundary value problem may be stated as 
follows : 

L3 (U) = 0,  (37) 

except on the disk and 

U = 1, x ; = 0 ,  0 . ~ p ' ~  1, (39) 
~ o (r- ~) as ,'--, o0. (40) 

Following the previous section the most convenient representation for the solution is to 
introduce oblate spheroidal coordinates by 

x's + ip' = sinh (c~ + ifl), (41) 

and since U does not depend on fi, the differential equation for U is 

(42) 

(43) 

d( 
d~ cosh 3c~ ~ = 0.  

If the region exterior to the disk is ~ ~ 0, the solution for U is readily found to be 

2 ~ sinh ~ } 
U = ~ {cosh2c~ + 3 cot- l (s inhc0 . 

in terms of the original coordinates. U can be expressed as 
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I r -- 1 ,~ ~ 
2 2 -  + �89 1)2+4pZsinZ~bl sin2 4)2 c~ 

U = - -  (44) 
- -  + l { ( r 2 -  1)2 +4p2sin2q~ 1 sinaq~2 c0s24~3} 

1~ r 2 - 1  }�89 
+3  cot-  ( 2 +�89176 

In this case the integral transformation (32) maps the disk problem into a five-dimensional 
axially symmetric potential for a straight line segment or needle I xsl ~ 1, p = 0. The boundary 
value problem for W is thus 

L3 (W) = O, (45) 

except on the needle p=O, Ixsl < 1, subject to 

W(xs.p)=l,  p = 0 ,  lxs l<  1, 

0W 
- 0, p=O, IxsI < l ,  

W ~ O ( ~ )  as r ~ o e .  

As in the three-dimensional case 0W/0p40 on the needle. 
On the axis p = 0, 

+ 3co t  1 + ~lr - 1  , (47) 

where Ixs] =r,  when p=0 .  It follows that W is continuous at the tips of the needle, but the 
derivative is infinite like e-~, where e is the distance from a tip. If x5 is replaced by z, so that 
r = (p2 + Z2)�89 then 

1 U sin2 qbl sin (a2d(old(a2d(o3 (48) 
p )  = o 

where U is defined by Eqn. (44). 

4. Application to streaming flow 

The fluid velocity q for axially symmetric incompressible viscous flow can be expressed in terms 
of a stream function ~, (z, p) by 

{ ~q~} (49) 
q --- curl - P , 

where 0 satisfies the vorticity equation 
l) 02 1 0 0 2 

L2-1(O)=RP 0('z,'p) L - l =  + - -  (50) , @2 p c~p gz 2' 

where l=  L_ l(O)/p 2 is the ring vorticity and R is the Reynolds number for the flow. If the 
motion is that of streaming flow past a fixed obstacle R can be defined as R = U~ a/v, where Uo~ 
is the speed of the stream at infinity, a is a typical length scale for the obstacle and v is the 
kinematic viscosity. A known particular solution of Eqn. (50) is the potential flow 

t - 1  (O) ~-- O. (51) 
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Solutions of Eqn. (51) are in general not useful to viscous flow because no slip boundary 
conditions cannot be satisfied on a fixed surface. However, in the case of a line segment it will 
be shown that a solution can be constructed for streaming flow past a needle in which the 
fluid velocity vanishes on the part of the axis occupied by the needle. First it is noted that the 
solution satisfying the inviscid boundary condition on the needle is just ~ =21-p 2, SO that the fluid 
does not recognize the presence of the boundary. If the fluid is viscous the boundary value 
problem for the needle will be defined as follows: ~ is a solution of L_ 1 (0) = 0 except on p = 0, 
I z[ ~ 1, satisfying 

- - 0 ,  p = 0 ,  [ z ] < l ,  
p 0p z 0p 

0 = L-I(O) = O, p=O, Izl > 1, (52) 
and 

~�89 as r ~ .  

To solve this problem it is convenient to employ the Weinstein correspondence principle and 
write ~ in the form 

~t = �89 {1 -v(3)(z, p)] ,  (53) 

where v(3~(z, p) is an axially symmetric harmonic in 5 dimensions satisfying the conditions 

~(~(z, 0) : 1, Izl < 1, 

Dv (3) 
- O, p = O ,  Iz] > 1 ,  (54) 

ap 
and 

v(3)~O(r -3) as r - ~ .  

This is the problem solved in the previous section and can be expressed as 

1 = U sin2 ~1 sin 42d~Old42d43, (55) 
v ~ ( z ' P )  = 7 ~  o o o 

where U is defined by Eqn. (44). It is readily checked that the fluid velocity vanishes on p = 0, 
[zl ~ 1, and behaves like a uniform stream at infinity. Since v ~3)~ O(r-3). It follows that the 
leading order terms at infinity consist of a uniform stream and a fluid producing dipole. The 
fluid velocity is continuous near the tips of the needle but the velocity derivatives contain weak 
singularities in these regions. This follows from Eqn. (47) since the velocity on the axis is 

p = 0  

2 + ~lz -1.r 
= 3 -~ i~__+1  1 2 ? + 3c~  

+ ~tz -1[ 
+ 

(56) 

(57) 

To obtain the leading terms in the expansion of W (z, p) about a tip introduce local polar coor- 
dinates by 

r c o s 0 = l + r  1cos01 , r s i n 0 = r  1s in01,  

then from Eqn. (48) it is readily shown that 

4 
W ~ 1 - 37x~ 3 r~ {cos 01+ 

0 0 0 

[cos e 01 + sin e 01 sin e ~b, sin 2 ~b 2 cos 2 ~b3]~}~ sin 2 4~1 sin q~2 &bl dqS2 &b3, (58) 
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f o r 0 ~  0 ~ < e < n .  
The solution of Eqn. (54) is also a solution of the inviscid flow problem but the trivial solu- 

tion 4' = 2~p z may be preferred for inviscid flow as it contains no singularity at the tips. 

5. Stokes flow 

Before considering the Stokes flow past a line segment it is worth considering briefly the cor- 
responding flow past an ellipsoid of revolution and its limit as the surface degenerates into a 
line joining the foci. Defining prolate ellipsoidal coordinates by 

z + ip = cosh (r + it/), (59) 

the exterior of the ellipsoid is defined by 4 ~ r 0 ~< t /~ 2n. The stream function 4' for flow past 
an ellipsoid of revolution r ~ r has been found by Payne and Pell [3] and can be expressed in 
the form 

I-s(s 2 - 1 )  1 2 1"1 s + l ]  j 

L z s o - 13 ) 

where s = cosh 4, So = cosh 4o. As r the ellipsoid shrinks to a line joining the loci z = _+ 1, 
p = 0, and the stream function 4' is given by 

4' = �89  (61) 

which is the potential flow solution. However the velocity components are given by 
1 a4' } 

u -  = - 1 ,  a > 0  1 a4' (62) 
p 0p ,v  . . . .  0 ,  

0, ~ = 0  p c?x 

so that the flow is discontinuous. The drag also tends to zero. Such a flow is unrealistic but it is 
possible to find a continuous solution using the potentials of the previous sections. First from 
the Weinstein decomposition formula for iterated operator equations, a solution of the Stokes 
equation 

L2_1 (4') = 0 (63) 

can be represented in the form 

4' = 1/)2 [1 -a a v(1)(z, p ) -  A 3 V(3)(Z, p)]. (64) 

v(k)(z, p) is a solution of Lk v(k)) = 0, where the operator 
0 2 k 0 0 2 

L k =-- + + ap 2 p ~ ~z 2" 

Now if v (k) (z, p), k = l, 3, satisfy the boundary conditions 

v(k)(z, 0) = 1, IZl < 1, 

Or(k) 
- 0, p = 0 ,  Izl > 1 ,  (65) 0p 

v (k)~ O(r -k) as r ~ o e ,  

then the velocity vanishes on the needle and satisfies the outer boundary condition ira 1 + Aa = 1. 
The flow is not uniquely determined and v (1), v (3) are defined by the expressions (23) and (48). 
The solution which is least singular at the tips corresponds to setting A ~ = 0. This implies there 
is no vorticity in the fluid and hence the line segment experiences no drag. The pressure is also 
finite at the tips. If A 1 @ 0, there is a finite non-zero drag on the line segment and the pressure is 
infinite like and inverse square root of distance from the tips. 
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